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Abstract We study homogeneous, independent percolation on general quasi-transitive
graphs. We prove that in the disorder regime where all clusters are finite almost surely,
in fact the expectation of the cluster size is finite. This extends a well-known theorem by
Menshikov and Aizenman & Barsky to all quasi-transitive graphs. Moreover we deduce that
in this disorder regime the cluster size distribution decays exponentially, extending a result
of Aizenman & Newman. Our results apply to both edge and site percolation, as well as long
range (edge) percolation. The proof is based on a modification of the Aizenman & Barsky
method.

Keywords Random graphs · Edge percolation · Site percolation · Quasi-transitive graphs ·
Phase transition

1 Introduction

Percolation theory is devoted to the study of geometric properties of random subgraphs of
a given graph. In particular, one wants to understand which disorder regimes exhibit the
existence of an infinite cluster, i.e. an infinite component of the subgraph generated by the
percolation process.

For percolation models on graphs the low density phase is often defined as the regime
of randomness where the expected cluster-size is finite, whereas the high density phase is
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Emmy-Noether-Programme of the Deutsche Forschungsgemeinschaft & Fakultät für Mathematik,
TU Chemnitz, 09107 Chemnitz, Germany
e-mail: tonci.antunovic@mathematik.tu-chemnitz.de

Present address:
T. Antunović
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defined as the disorder regime where there exists an infinite cluster almost surely. More
specifically, for identically distributed, independent models there is only one scalar disorder
parameter (usually denoted by p) which measures the extent of the randomness. If one
denotes the supremum of the parameter values which correspond to the low density regime
by pT , and the infimum of the parameter values which correspond to the high density regime
by pH , then the statement pT = pH is called sharpness of the phase transition. In other
words, an intermediate phase between the low and high density regime reduces to (at most)
a single value of the parameter p.

This result has been proven by Menshikov in [12] (see also [13] by Menshikov,
Molchanov & Sidorenko) and Aizenman & Barsky in [1] for a large class of percolation
processes on graphs. More precisely the results of [12, 13] cover independent site percola-
tion on quasi-transitive graphs of subexponential growth. The percolation parameter can be
different for the different classes of vertices. In [13], where the proof of [12] is explained
in more detail, it is noted in Remark 6.1 that the method of proof works also with a relaxed
growth condition on the graph, however, that it is not possible to eliminate it completely.
The results of [1] hold for directed and undirected, independent, site and bond, short range
percolation models on Z

d . Since the considered graphs are essentially Cayley graphs of Z
d

their volume growth is polynomially bounded. The results of [1] furthermore apply to so
called long range edge percolation, a model where edges may be present between any pair
of vertices, with probability decreasing in the distance between the vertices.

Any edge percolation process can be transformed into a site percolation process by pass-
ing to the line graph. If the original graph has a finite number of edge orbits under the
automorphism group action, the resulting line graph will be quasi-transitive. Thus the re-
sults of [12, 13] apply to edge percolation, too. In contrast to this, if we transform a long
range edge percolation process to a site percolation process via the line graph construction
we lose quasi-transitivity. More precisely, to avoid triviality for long range edge percolation
we need to have an infinite number of different percolation parameters assigned to the edges.
Thus the edge set decomposes into an infinite number of classes, which means that the line
graph will have infinitely many vertex types, violating the quasi-transitivity property.

We adapt the method of differential inequalities used in [1] for the study of Z
d -models, to

show that the sharpness of the phase transition actually holds for all quasi-transitive graphs.
Again we can treat short range site and edge percolation, as well as long range edge percola-
tion. On the technical level the differences to [1] are the following: In [1] finite torus graphs
are used to approximate the infinite Z

d graph, which has the advantage that the approximat-
ing graph is still homogeneous, i.e. transitive. In the general case this is not possible, thus we
work with finite approximation graphs which have a ‘boundary’. As a consequence of this
and quasi-transitivity rather than transitivity, in comparison to [1] additional finite volume
terms appear in the differential inequalities. We control these correction terms to show that
the modified inequalities still lead to a proof of the sharpness of the phase transition.

All graphs mentioned so far have a rich algebraic structure which is formulated in terms
of transitivity or quasi-transitivity. Looking at the modifications of the Aizenman & Barsky
method needed for quasi-transitive graphs one gets the impression that one can adopt the
proof to obtain the same results for graphs which have uniform local combinatorial com-
plexity bounds, without having necessarily a large automorphism group. An example would
be the Penrose tiling, whose percolation properties were studied by Hof in [7]. For such
graphs the finite volume effects can probably be controlled in a similar way as for quasi-
transitive graphs. Müller and Richard have recently obtained related results using different
techniques [15].

Apart from the fact that the equality pT = pH establishes for homogeneous, independent
models on Z

d that percolation has only one phase transition, it has also played a crucial role
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for the proof of Kesten’s theorem [8], namely, that on the two dimensional lattice Z
2 we

have pT = pH = 1/2 for edge percolation.
Closely related to the sharpness of the phase transition are the results [2] by Aizenman &

Newman. On the one hand they prove the divergence of the expectation value of the cluster
size as the disorder parameter approaches pT from below, a statement which is used in [1]
for the proof of pT = pH . On the other hand, Aizenman & Newman show the exponential
decay of the cluster size distribution for p < pT . We deduce that these results hold actually
for all quasi-transitive graphs.

Our interest in the sharpness of the phase transition stems from the study of percolation
Hamiltonians, more precisely adjacency and combinatorial Laplacians on percolation sub-
graphs, and in particular their integrated density of states (IDS). While for the definition of
the IDS for general graphs with a free, amenable, quasi-transitive group action, cf. [18, 19],
an understanding of the phase transition(s) is not necessary, it seems that for the proof of
Lifshitz asymptotics such understanding is crucial.

Lifshitz tails describe the asymptotic behavior of the IDS near the boundaries of the spec-
trum and have been established for independent site percolation on Z

d by Biskup & König
[5] and independent edge percolation on Z

d by Kirsch & Müller, resp. Müller & Stollmann
in [10, 14]. Before that Klopp and Nakamura [11] derived partial results for the random
hopping model, which includes the edge percolation Hamiltonian as a special case. In [3,
4] we study subcritical independent site and edge percolation on amenable Cayley graphs.
For the adjacency and the combinatorial Laplace operator we obtain the asymptotics of the
IDS at the spectral edge. Our results depend on the decay rate of the cluster size distribution.
They apply in particular to Lamplighter graphs which are amenable, but have exponential
volume growth. Let us also remark, that the results of [3] cover combinatorial Laplacians on
long range percolation graphs in the subcritical phase. This explains our objective to derive
the exponential decay of the subcritical cluster size also for graphs with arbitrary growth
behavior, and for long range edge percolation.

The structure of this paper is as follows: In the next section we define our percolation
model and state the main results. In Sect. 3 we state some basic facts which are common
for site and for edge percolation. The two subsequent sections are devoted to (short range)
edge percolation. Namely, in Sect. 4 we introduce the (finite volume) order parameters and
in Sect. 5 we show that they obey certain differential inequalities. In Sect. 6 we establish the
same facts for site percolation. This allows us to complete the proof of our main result for
both types of percolation processes in Sect. 7. The last section contains an extension of our
main result to long range edge and oriented percolation.

2 Notation and Results

Let G = (V ,E) be an infinite, countable, connected graph, with vertex set V and edge set
E. The fact that the vertices x and y are adjacent will be denoted by x ∼ y and [x, y] will
stand for the unoriented edge which connects x and y. By d:V × V → R we denote the
usual graph distance, that is d(x, y) is the length of a shortest path between two vertices
x and y. For a vertex x and a nonnegative integer n, B(x,n) is the ball, with center x, of
radius n, in the above metric. For the sphere of radius n around x we shall write S(x,n) :=
{y ∈ V |d(y, x) = n}. The group of graph automorphisms will be denoted by Aut(G). For
any subgraph G′, |G′| will stand for the number of vertices in G′, which may be infinite.
When a subgraph G′ is given, we will say that two neighboring vertices of G, x and y, are
directly connected in G′, if the edge [x, y] is an edge of the graph G′. For two subgraphs
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G1 = (V1,E1) and G2 = (V2,E2) we define their intersection G1 ∩G2 := (V1 ∩V2,E1 ∩E2).
Notice that the intersection is always well defined. The notation G′ ⊂ G means that G′ is
either a proper subgraph of G or G itself.

A graph G is called quasi-transitive, if there exists a finite set of vertices F such that for
any vertex x there is a y ∈ F and γ ∈ Aut(G) such that γy = x. In the following we will
always assume that the set F is minimal with respect to inclusion. Such an F will be called
fundamental domain. For any graph G we can consider the action of the group Aut(G) on
the set of vertices V . Thus, a graph is quasi-transitive, if and only if the set of vertices is
decomposed into finitely many orbits, with respect to this action. A fundamental domain is
then any set of vertices which intersects each orbit in exactly one vertex. The number of
elements in any fundamental domain is the same. If a fundamental domain contains only
one element we call the graph transitive.

Now we introduce the usual nearest neighbor Bernoulli bond percolation model. We
fix some parameter 0 ≤ p ≤ 1. For each edge of the graph G we say that it is open with
probability p and closed with probability 1 − p, independently of all other edges. That
is, for each edge e ∈ E we take a probability space (Ωe,P (Ωe),Pe), where Ωe = {0,1},
P (Ωe) is the power set of Ωe and Pe(1) = p, Pe(0) = 1 − p. The percolation probability
space (Ω,A,P) is defined as the product of these probability spaces, that is Ω := ∏

e∈E Ωe ,
A := ⊗

e∈E P (Ωe) and P := ⊗
e∈E Pe . The probability measure P obviously depends on p.

This dependence will sometimes be stressed by writing Pp instead of P. The same holds for
the expectation E.

Elements of Ω will be called configurations because each of them uniquely represents
some configuration of open and closed edges. For a given configuration ω and a given edge
e, the value ωe will be called the state of e. By G(ω) denote the subgraph of G obtained by
deleting all closed edges with respect to the configuration ω, i.e. for the set of vertices of
G(ω) we take the set of vertices of the graph G, while the set of edges of G(ω) is the set of
open edges with respect to the configuration ω. Connected components of G(ω) are called
clusters. The cluster containing the vertex x will be denoted by Cx(ω). The probability
measure is invariant under the graph automorphisms and so, in the case of a transitive graph,
the probabilistic properties of Cx(ω) do not depend on the choice of x. Thus, in this case,
we will often assume that a certain vertex x is fixed and denote the cluster Cx(ω) by C(ω).

The nearest neighbor site percolation model is introduced in an analogous way. For
each vertex x we say it is open with some probability p ∈ [0,1] and otherwise closed,
independently of all other vertices. In other words, we consider the probability space
(Ω,A,P) := ∏

x∈V (Ωx,P (Ωx),Px), where (Ωx,P (Ωx),Px) is defined in the same way as
(Ωe,P (Ωe),Pe) before. Now for some given configuration ω the percolation graph G(ω)

is defined simply as the subgraph induced by the set of open vertices with respect to the
configuration ω. Clusters are again defined as connected components of G(ω). We will use
the same notation as in the bond model. Note that subgraphs G(ω) do not have to contain
all the vertices of G and thus the event {|Cx | = 0} has positive probability (namely equal to
1 − p).

Remark 1 Everything we mentioned above can be defined for any subgraph G′ = (V ′,E′).
Of course, the probability space will be different, but every event T in the new probability
space can (and will) be identified with the cylinder set T × ∏

e/∈E′ Ωe (T × ∏
x /∈V ′ Ωx in the

case of the site model). In the corresponding probability spaces these events have the same
probabilities. Thus we use the same notation for the corresponding probability measures.
Since the notion of clusters in G′ and G is not the same, we will denote by CG′

x the cluster
of x in the graph G′.
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Since the statements in the present section hold equally for site and for bond percolation,
we will use in this section simply the term percolation. Next we will describe the most basic
properties of the percolation process, without giving proofs. In Remark 8 in the next section
we briefly sketch how these properties are proven.

An important property of percolation is the existence of a phase transition between
a percolating and a non-percolating phase. Consider some fixed vertex x and the event
{|Cx | = ∞}. The probability of this event Pp(|Cx | = ∞) is equal to 0 when p = 0 and 1
when p = 1. Furthermore, it can be shown that Pp(|Cx | = ∞) is a non-decreasing function
of p. Thus, if we define pH := sup{p ∈ [0,1];Pp(|Cx | = ∞) = 0}, we see that the proba-
bility Pp(|Cx | = ∞) is equal to 0, if p < pH and strictly positive, if p > pH . In the case
p < pH there is no infinite cluster almost surely, while in the case p > pH there exists an
infinite cluster almost surely. The value of pH does not depend on the vertex x. It is of-
ten called the percolation threshold. The case p < pH is called subcritical phase, the case
p > pH is called supercritical phase, while p = pH is called critical phase.

If pH < 1 it is obvious that Ep(|Cx |) = ∞ for all p > pH . The behavior of Ep(|Cx |) in
the subcritical phase is much more interesting. The expectation Ep(|Cx |) is finite at p = 0
and is infinite at p = 1. It can be shown that it is a non-decreasing function of p. So, if we
define pT := sup{p ∈ [0,1],Ep(|Cx |) < ∞}, we see that Ep(|Cx |) is finite, if p < pT and
infinite if p > pT . Like the value of pH , the value of pT is also independent of the choice
of vertex x.

The relation pT ≤ pH between the critical values is obvious. Our goal is to prove equality
of the two values. Our main result is the following.

Theorem 2 For every quasi-transitive graph G we have pT = pH .

As mentioned in the introduction, for general percolation models on the lattice the equal-
ity of the two critical points was proven in [1]. The method of proof was the use of dif-
ferential inequalities for certain (finite volume) order parameters. In [1] one can also find a
discussion of the use of such differential inequalities in other models of statistical physics.
Using a different method, sharpness of the phase transition for site percolation on quasi-
transitive graphs with subexponential growth was proven in [12], see Remark 4 below.

Similarly as in the lattice setting [1], Theorem 2 holds also for long range and oriented
percolation on quasi-transitive graphs. To show this, one has only to modify certain steps in
the proof of the basic version of Theorem 2. We present and explain these modification in
the last section of this paper.

It is well known that, in the subcritical phase on the lattice, the probabilities of the events
of the form {|Cx | ≥ n} decay exponentially in n. The same result holds in the case of quasi-
transitive graphs.

Theorem 3 Let G be a quasi-transitive graph and let p < pH . We can find a constant
αp > 0 such that for any positive integer n we have

Pp(|Cx | ≥ n) ≤ e−αpn, for any vertex x.

In the lattice case, exponential decay was first proven for all p such that Ep(|C|) < ∞.
This result follows from Theorem 5.1 in [9]. The same result was proven for more general
models on transitive graphs in Proposition 5.1 in [2]. Consequently, the exponential decay
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in the subcritical phase is just a corollary of the equality of critical points pT and pH . The
proof of Proposition 5.1 from [2] extends directly from transitive graphs to quasi-transitive
ones. Thus Theorem 3 follows directly from Theorem 2.

Remark 4 In [12, 13] Menshikov et al. pursued a different route of argument. They first show
that for site percolation with p < pH on quasi-transitive graphs of subexponential growth
the cluster radius distribution decays exponentially. More precisely, for every p < pH there
exists a constant α̃p > 0 such that for all x ∈ V and all n ∈ N

Pp(Cx ∩ S(x,n) �= ∅) ≤ e−α̃pn (1)

holds. By the subexponential growth condition on the graph, this implies that the expected
cluster size is finite. The key step in the proof of (1) is an estimate on the conditional expec-
tation

Ep( |δ{Cx ∩ S(x,n) �= ∅}| | Cx ∩ S(x,n) �= ∅),

where |δA| denotes the number of pivotal sites for the event A. Note that the estimate (1)
on the cluster radius distribution is weaker than the one in Theorem 3 on the cluster size
distribution.

In the proof of Theorem 2 we will need the following result.

Proposition 5 For percolation on a quasi-transitive graph, we have for every vertex x:

lim
p↑pT

Ep(|Cx |) = ∞. (2)

In particular, EpT
(|Cx |) = ∞ for any x ∈ V .

In the lattice case the divergence of EpT
(|Cx |) was proven in Corollary 5.1 in [9]. The

stronger statement (2) was then proven for more general percolation processes on transi-
tive graphs in Lemma 3.1 in [2]. The proof of this statement for quasi-transitive graphs is
essentially the same.

The versatility of the differential inequalities method as presented in [1] is illustrated by
the fact that on the way to prove Theorem 2 one obtains as an aside a bound on the critical
exponent δ, cf. (40) for a definition.

Proposition 6 The critical exponent satisfies δ ≥ 2.

This is a direct consequence of Lemma 22.

3 Basic Facts

Now we shall present some basic definitions and results from percolation theory. To be
able to treat both the site and the bond model simultaneously, we shall denote, in the bond
case, the edge set of a given graph G by S. In the site case, S will denote the vertex set
of G.
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Definition 7

(a) We say that the event A ∈ A is increasing, if

ω1 ∈ A, ω1 ≤ ω2 ⇒ ω2 ∈ A.

Here elements of Ω are ordered as functions from S to {0,1}.
(b) We say that a random variable N is increasing, if for any two configurations ω1 and ω2,

such that ω1 ≤ ω2 we have N(ω1) ≤ N(ω2).
(c) We say that an event A depends only on finitely many states, if it is contained in some

finite dimensional cylinder set in A.
(d) For two increasing events A1 and A2, which depend only on finitely many states, we

define the event

A1 ◦ A2 := {ω ∈ Ω; there are disjoint S1, S2 ⊂ suppω,

such that for any ω1,ω2 ∈ Ω ωi |Si
= 1 ⇒ ωi ∈ Ai, i = 1,2},

where suppω := {s ∈ S;ωs = 1}.
(e) For an increasing event A and ω ∈ Ω we say that s0 ∈ S is pivotal for A with respect to

ω, if ω1 ∈ A and ω0 /∈ A, where ω0 and ω1 have the same values as ω on all elements of
S except on s0 where ωi has value i (i = 0,1). The set {s0 is pivotal for the event A} is
obviously an event.

Fundamental Tools

(a) For any increasing event A the function p �→ Pp(A) is non-decreasing.
(b) For any increasing random variable N , the function p �→ Ep(N) is non-decreasing.
(c) Russo formula

Suppose A is an increasing event which depends only on states of elements in some
finite set S ′, more precisely, on ω|S′ , where S ′ ⊂ S is finite. Let p = (ps)s∈S′ be a given
vector, such that ps ∈ [0,1], for all s ∈ S ′. Let Pp be the product probability measure
constructed in the same way as the percolation measure before, by declaring an s ∈ S ′

to be open with probability ps . Then the function p �→ Pp has all first partial derivatives,
which satisfy

dPp(A)

dps

= Pp(s is pivotal for A), for any s ∈ S ′.

(d) FKG inequality
For any increasing events A1 and A2 we have P(A1 ∩ A2) ≥ P(A1)P (A2).

(e) BK inequality
For any increasing events A1 and A2, which depend only on finitely many states, we
have P(A1 ◦ A2) ≤ P(A1)P(A2).

For the proofs of these Fundamental Tools and more background see Chap. 2 in [6].

Remark 8 Having these results one can easily prove some claims from the previous sec-
tion. Since the event {|Cx | = ∞} is increasing, the function p �→ Pp(|Cx | = ∞) is non-
decreasing. Similarly, the random variable |Cx | is increasing which implies that the function
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p �→ Ep(|Cx |) is non-decreasing. Using the FKG inequality one can easily show that the
constants pT and pH do not depend on the choice of the vertex x. To see this, first notice

{x is connected to y} ∩ {|Cy | = ∞} ⊆ {|Cx | = ∞}. (3)

Now, because G is connected, Pp(x is connected to y) > 0 and thus the FKG inequality and
(3) imply

Pp(|Cy | = ∞) > 0 ⇒ Pp(|Cx | = ∞) > 0.

Because of the symmetry of the role played by x and y, pH does not depend on x. To prove
the claim for pT , one decomposes Ep(|Cx |) in the form Ep(|Cx |) = ∑∞

n=1 Pp(|Cx | ≥ n) and
uses a relation similar to (3) for the increasing event {|Cx | ≥ n}.

4 The Order Parameter

In this and the following section we shall work exclusively in the nearest neighbor Bernoulli
bond percolation model. The site model will be discussed in Sect. 6.

In the remainder of the paper it will be more convenient to work with the parameter
β > 0 such that p = 1 − e−β , instead with p. Assuming pH < 1, we can define βT and
βH by pT = 1 − e−βT and pH = 1 − e−βH . We will prove Theorem 2 in the context of βT

and βH , but our proof works also in the case pH = 1 (this case corresponds to βH = ∞).
Also we will abuse notation by writing Pβ for the probability measure which corresponds to
percolation with parameter p = 1 − e−β , and use a similar notation for the expectation.

From now on we will assume that we are given a fixed quasi-transitive graph G. Sub-
graphs of G, which we will consider, will not be required to be quasi-transitive. Moreover,
we will assume that some fundamental domain F is chosen and fixed. For each positive
integer l we define a subgraph Λl as follows. For the set of vertices of the graph Λl take⋃

x∈F B(x, l) and connect two vertices, if and only if they are connected in the graph G.
To prove Theorem 2, we will follow the arguments in [1]. The idea of the proof there

was to consider a so called order parameter, a function of two variables which contains
information about both Pβ(|Cx | = ∞) and Eβ(|Cx |). For any vertex y we define the order
parameter with respect to y by

My : ]0,∞[2 → [0,1], My(β,h) := 1 −
∑

n∈N

Pβ(|Cy | = n)e−nh.

The order parameter M is defined as

M: ]0,∞[2 → R, M(β,h) :=
∑

x∈F
Mx(β,h).

When a finite subgraph G′ is given, we can define an analog function with respect to
G′. Namely, for y in G′ we define MG′

y (β,h) := 1 − ∑
n∈N

P(|CG′
y | = n)e−nh. Particu-

larly interesting for our purposes will be the finite volume order parameter, defined as
MΛl (β,h) := ∑

x∈F M
Λl
x (β,h).

In the following Lemmas and Propositions we establish certain basic properties of the
order parameter.



Sharpness of the Phase Transition and Exponential Decay 991

Lemma 9 Let G′ be an arbitrary subgraph of G and y an arbitrary vertex in G′. The
following formula holds

MG′
y (β,h) =

∑

n∈N

P(|CG′
y | ≥ n)(e−(n−1)h − e−nh). (4)

In particular, (4) holds in the cases G′ = G and G′ = Λl .

Proof The proof is straightforward, using P(|CG′
y | ≥ n) = 1 − ∑n−1

k=1 P(|CG′
y | = k). �

Proposition 10 The order parameter M has the following properties.

(a) M is a non-decreasing function in both variables.
(b) M has a continuous partial derivative in h, and we have the formula

∂M

∂h
(β,h) =

∑

x∈F

∑

n∈N

nPβ(|Cx | = n)e−nh. (5)

The analogous claims hold for the finite volume order parameter.

Proof (a) Since the event {|Cy | ≥ n} is an increasing event, the probability Pβ(|Cy | ≥ n) is
a non-decreasing function of β . From Lemma 9 it is clear that M is non-decreasing in β . On
the other hand, from the definition it is clear that M is even strictly increasing in h.

(b) To prove this claim we just have to show that the series of formal partial derivatives∑
n∈N

nPβ(|Cy | = n)e−nh converges locally uniformly. But this is clear since

∑

n∈N

nPβ(|Cy | = n)e−nh ≤
∑

n∈N

ne−nh

and the latter series converges absolutely and locally uniformly. �

The functions M and ∂M
∂h

are positive on ]0,∞[2, h �→ M(β,h) is non-decreasing and
h �→ ∂M

∂h
(β,h) is non-increasing. The last claim is clear from the formula (5). Thus the lim-

its limh↓0 M(β,h) and limh↓0
∂M
∂h

(β,h) are well-defined with values in [0,∞[, respectively
[0,∞]. The next proposition gives the probabilistic interpretation of these limits.

Proposition 11 For every β ∈]0,∞[ we have the following

limh↓0 M(β,h) =
∑

x∈F
Pβ(|Cx | = ∞),

limh↓0
∂M

∂h
(β,h) =

∑

x∈F
Eβ(|Cx |; |Cx | < ∞).

(6)

Proof Since limh↓0 e−nh = 1, for every n ∈ N, using the Lebesgue monotone convergence
theorem, we get limh↓0 Mx(β,h) = 1 − ∑

n∈N
Pβ(|Cx | = n) = Pβ(|Cx | = ∞). Now the first

equality in (6) follows. The second one can be proved in the same manner, using formula
(5). �

Thus we obtain—as indicated earlier—the functions β �→ ∑
x∈F Pβ(|Cx | = ∞) and β �→∑

x∈F Eβ(|Cx |; |Cx | < ∞), which we wanted to understand in the first place, as marginals
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of M and ∂M
∂h

. Now we give two lemmas, which will be used repeatedly in the proof of the
key inequalities presented in Propositions 17 and 18.

Lemma 12

(a) Let G1 be any subgraph of G, and G2 any finite subgraph of G1, containing some vertex
x. For any nonnegative integer n we have

P(|CG2
x | ≥ n) ≤ P(|CG1

x | ≥ n). (7)

Moreover, M
G2
x (β,h) ≤ M

G1
x (β,h), for all positive β and h.

(b) Let y be a vertex of Λl and x be the unique element of F in the same orbit as y. For any
nonnegative integer n we have

P(|CΛl
y | ≥ n) ≤ P(|Cy | ≥ n) = P(|Cx | ≥ n). (8)

(c) For any vertex x ∈ F and n ≤ l we have

P(|CΛl
x | ≥ n) = P(|Cx | ≥ n). (9)

Proof (a) Let A be an arbitrary connected subgraph of G2, containing the vertex x.
The identification from Remark 1 implies that the probabilities of the events {CG2

x =
A} and {A is the component of Cx ∩ G2 containing x} are equal. Similarly the probabil-
ity of the event {A is the component of C

G1
x ∩ G2 containing x} is equal to probability of

{A is the component of Cx ∩ G2 containing x}. So we can write

P(CG2
x = A) = P(A is the component of CG1

x ∩ G2 containing x).

Since the events on the right side are disjoint for different A’s, we can write

P(|CG2
x | ≥ n) =

∑

A;|A|≥n

P(CG2
x = A)

=
∑

A;|A|≥n

P(A is the component of CG1
x ∩ G2 containing x)

≤ P(|CG1
x ∩ G2| ≥ n) ≤ P(|CG1

x | ≥ n). (10)

The last inequality follows from {|CG1
x ∩ G2| ≥ n} ⊂ {|CG1

x | ≥ n}. The sums in (10) are
taken over all connected subgraphs of G2, which contain x and which are of size greater or
equal than n. Since G2 is a finite graph, these sums are finite. Now the claim M

G2
x (β,h) ≤

M
G1
x (β,h) follows directly from Lemma 9.
(b) The first inequality follows directly from part (a), if we take G2 = Λl and G1 = G.

The second (in)equality follows from the fact that there is an automorphism τ such that
x = τy and that the probability measure is invariant under τ .

(c) For any k < l and any connected subgraph A of Λl of size k, which contains x, the
edge set and the edge boundary of A are contained in Λl . So it is clear that for any such
A we have P(C

Λl
x = A) = P(Cx = A). Taking the sum over all possible A’s, when k is

fixed, we obtain P(|CΛl
x | = k) = P(|Cx | = k). Taking the sum over k < n and subsequently

complements yields the result. �
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Lemma 13 Let y be a vertex of Λl and x the unique element of F in the same orbit as y.
Then, for all (β,h) ∈]0,∞[2, the following inequality holds

MΛl
y (β,h) ≤ MΛl

x (β,h) + e−lh. (11)

Proof Using Lemma 9 we can write

MΛl
y (β,h) =

l∑

n=1

P(|CΛl
y | ≥ n)(e−(n−1)h − e−nh)

+
∑

l+1≤n<∞
P(|CΛl

y | ≥ n)(e−(n−1)h − e−nh). (12)

Using parts (b) and (c) of Lemma 12 we can bound the first summand

l∑

n=1

P(|CΛl
y | ≥ n)(e−(n−1)h − e−nh)

≤
l∑

n=1

P(|Cx | ≥ n)(e−(n−1)h − e−nh)

=
l∑

n=1

P(|CΛl
x | ≥ n)(e−(n−1)h − e−nh) ≤ MΛl

x (β,h). (13)

The second summand can be easily bounded

∑

l+1≤n<∞
P(|CΛl

y | ≥ n)(e−(n−1)h − e−nh) ≤
∑

l+1≤n<∞
(e−(n−1)h − e−nh) = e−lh. (14)

Inserting (13) and (14) into (12) we get the result. �

Remark 14 In [1], where percolation on the lattice Z
d was analyzed, the finite graphs Λl

where chosen to be tori, i.e. cubes with periodic boundary conditions. This has the advantage
that percolation on the finite graphs is still homogeneous under translations. In this situation,
(11) simplifies to M

Λl
y (β,h) = M

Λl
x (β,h). In particular, there is no finite volume correction

term e−lh.

Notice that the subgraphs Λl exhaust the whole graph G as l goes to ∞. Therefore, in
the macroscopic limit l → ∞, we can expect the finite volume order parameters to behave
like the order parameter. The proof of this claim is the content of the next proposition.

Proposition 15 The finite volume order parameter MΛl and its partial derivative ∂MΛl

∂h
con-

verge pointwise to M and ∂M
∂h

, respectively. In other words, for all (β,h) ∈]0,∞[2 we have

lim
l→∞

MΛl (β,h) = M(β,h), lim
l→∞

∂MΛl

∂h
(β,h) = ∂M

∂h
(β,h).

Proof Fix some x ∈ F . Lemma 12(c) implies liml→∞ P(|CΛl
x | ≥ n) = P(|Cx | ≥ n), for any

positive integer n. Using Lemma 9 and the Lebesgue dominated convergence theorem we
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get

lim
l→∞

MΛl
x (β,h) = Mx(β,h), for all (β,h) ∈]0,∞[2,

for any x ∈ F . Taking the sum over x ∈ F we get the desired result for the order parameter.
The claim for the partial derivative is obtained in the same way using the formula

∂MΛl

∂h
=

∑

x∈F

∑

n∈N

nPβ(|CΛl
x | = n)e−nh,

which is proved in the same way as the formula for ∂M
∂h

in Proposition 10(b). �

Another way of looking at the order parameter is through the idea of “colored sites”,
which was used in the paper [1]. Fix a positive real h > 0. For every vertex y say that
it is blue with probability 1 − e−h independently of all other vertices. The corresponding
probability space is defined similarly as the site percolation probability space before. For
each vertex y define the probability space (Ωy,P (Ωy),Py), where Ωy := {0,1}, P (Ωy) is
the power set of Ωy and Py(1) = 1−e−h, Py(0) = e−h. The probability space (Ω ′,A′,P

′
h) is

defined as the product of these probability spaces. From now on, we shall actually work on
the probability space (Ω,A,Pβ) × (Ω ′,A′,P

′
h). The probability measure will be denoted

by Pβ,h, but again we will often omit the subscript. The random set of blue sites will be
denoted by B . Analog functions can be defined on subgraphs of G, and in this case we use
the same notation as before.

The event that some vertex y is connected to some blue site with an open path will be
denoted by {y ↔ B} or by {Cy ∩B �= ∅}, while {y � B} and {Cy ∩B = ∅} will stand for the
complement of this event. For connectedness with open edges which have end-vertices in
some given set A we will use {y ↔A B}, while for connectedness with open edges which are
also edges of some subgraph G′ = (V ′,E′) we will write {y ↔G′ B}. If V ′ is a given finite
set of vertices and A : Ω → P (V ′) a function from Ω to the power set of V ′ then {y ↔A B}
will denote the set of ω’s for which there is an open path which connects y with an element
in B and contains only vertices in A(ω). If A is such that for any subset V ′′ ⊂ V ′, the set
{A(ω) = V ′′} is an event, the set {y ↔A B} is also an event. Similar notation will be used
for random subgraphs.

The blue sites are, in some sense, identified with “infinity”. For example, for some fixed
vertex x, the event {x ↔ B} is the generalization of {|Cx | = ∞}, because the open path
from x which reaches some vertex in B is considered to have escaped to infinity. Intuitively,
if the parameter h decreases to 0, the density of blue sites decreases to 0, and they “move
further and further away” from x. So, their effect on the whole picture gets less relevant and
in the limit h ↓ 0 we should expect to return to our original percolation setting. Namely, the
probability of the event {x ↔ B} should converge to the probability of the event {|Cx | = ∞}.
This is actually a direct consequence of Proposition 11 in view of Proposition 16. The next
proposition shows the relationship between the order parameter and blue sites.

Proposition 16 Let G′ ⊂ G be a subgraph of a quasi-transitive graph G and y some vertex
in G′. Using the above notation we have

My(β,h) = Pβ,h(y ↔ B), MG′
y (β,h) = Pβ,h(y ↔G′ B). (15)



Sharpness of the Phase Transition and Exponential Decay 995

Proof We prove the first equality in (15), while the second one can be proven in the same
way. It is enough to show

P(y � B) =
∑

n∈N

P(|Cy | = n)e−nh. (16)

For any positive integer n we have

P(|Cy | = n,y � B) =
∑

A;|A|=n

P(Cy = A,A ∩ B = ∅)

=
∑

A;|A|=n

P(Cy = A)P(A ∩ B = ∅),

where the last equality is obtained using the independence of bond and site variables and
the sums are taken over all connected subgraphs with n vertices containing y. Obviously
P(A ∩ B = ∅) = e−h|A| and so one obtains,

P(|Cy | = n,y � B) = P(|Cy | = n)e−nh. (17)

Now, we are left to estimate P(|Cy | = ∞, y � B). Define the random variable kn :=
min{m; |Cy ∩B(y,m)| ≥ n} which obviously has only finite values on the event {|Cy | = ∞}.
Next we can write

P(kn = m,y � B) ≤
∑

A

P(Cy ∩ B(y,m) = A,A ∩ B = ∅)

≤
∑

A

P(Cy ∩ B(y,m) = A)e−h|A| ≤ e−hn
P(kn = m), (18)

where the sum is taken over all possible realization of Cy ∩ B(y,m) = A such that the
condition kn = m is fulfilled. Since

P(|Cy | = ∞, y � B) ≤ P(kn < ∞, y � B) =
∞∑

m=0

P(kn = m,y � B),

for all positive integers n, using (18) we obtain P(|Cy | = ∞, y � B) ≤ e−hn for all positive
integers n and thus

P(|Cy | = ∞, y � B) = 0. (19)

From (17) and (19) we get (16), and hence the proof is completed. �

5 Differential Inequalities for the Order Parameter

In the following we will prove two differential inequalities involving the order parameter
MΛl . These inequalities differ from the inequalities (3.1) and (3.2) in [1], by the additional
term e−hl . This finite volume correction appears in our situation, since for general automor-
phism groups we cannot use “periodic” boundary conditions and thus percolation on the
finite graph Λl is no longer homogeneous. For residually finite automorphism groups it may
be possible to use periodic boundary conditions and thus eliminate the correction term e−hl .
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The above-mentioned differential inequalities will be crucial for the proof of Theo-
rem 2, because they contain essential information about the behavior of the order parameter
M(β,h) when h approaches 0. In the proof of Theorem 2 we will forget about the per-
colation and probability setting, and work with these inequalities instead, using analytic
methods. As for the proof of these inequalities, we will use the notion of blue sites exten-
sively.

Proposition 17 There exists a constant K > 0 such that

∂MΛl

∂β
≤ K(MΛl + e−lh)

∂MΛl

∂h
, for all positive β and h. (20)

Proof The event {x ↔Λl
B} is increasing and depends on the states of only finitely many

edges. Using the Russo formula for this event, we obtain

∂M
Λl
x

∂β
=

∑

[y,z]∈Λl

e−β
P([y, z] is pivotal for the event {x ↔Λl

B}),

where the sum is taken over all edges [y, z] in Λl . Since P([y, z] is closed) = e−β , and the
events {[y, z] is closed} and {[y, z] is pivotal for the event {x ↔Λl

B}} are independent, we
get

∂M
Λl
x

∂β
=

∑

[y,z]∈Λl

P([y, z] is closed, [y, z] is pivotal for the event {x ↔Λl
B}).

One should notice that

{[y, z] is closed, [y, z] is pivotal for the event {x ↔Λl
B}}

= {x �Λl
B, [y, z] is pivotal for the event {x ↔Λl

Bt}}
= {CΛl

x ∩ B = ∅, y ∈ CΛl
x , z ↔

Λl\CΛl
x

B} ∪ {CΛl
x ∩ B = ∅, z ∈ CΛl

x , y ↔
Λl\CΛl

x
B}.

Here Λl\CΛl
x stands for the graph obtained by deleting the vertices in C

Λl
x and all incident

edges of the graph Λl . Similar notation will be used often in the rest of the paper. Now we
pass from a sum over undirected edges to a sum over directed ones and write

∂M
Λl
x

∂β
=

∑

(y,z)∈Λ2
l

y∼z

P(CΛl
x ∩ B = ∅, y ∈ CΛl

x , z ↔
Λl\CΛl

x
B)

=
∑

(y,z)∈Λ2
l

y∼z

∑

A;y∈A

P(CΛl
x = A,A ∩ B = ∅, z ↔Λl\A B), (21)

where the last sum is taken over all connected subgraphs A of Λl containing x and y. The
event {CΛl

x = A} depends only on the states of edges which have at least one end-vertex in A.
The event {z ↔Λl\A B} depends only on the states of edges which do not have end-vertices
in A and on the states of vertices outside A. Finally the event {A ∩ B = ∅} depends only on
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the states of vertices in A. Hence these events are independent. Using this independence and
Proposition 16, (21) can be rewritten as

∂M
Λl
x

∂β
=

∑

(y,z)∈Λ2
l

y∼z

∑

A;y∈A

P(CΛl
x = A)MΛl\A

z e−h|A|. (22)

Lemmas 12(a) and 13 imply M
Λl\A
z ≤ M

Λl
z ≤ MΛl + e−lh. Inserting this into (22) we obtain

∂M
Λl
x

∂β
≤ K(MΛl + e−lh)

∑

A

∑

y;y∈A

P(CΛl
x = A)e−h|A|

= K(MΛl + e−lh)
∑

A

|A|P(CΛl
x = A)e−h|A|, (23)

where the sum is taken over all possible graphs A for C
Λl
x and K is the maximal vertex

degree in the graph G. Now grouping together all A’s for which |A| = n, we get

∑

A

|A|P(CΛl
x = A)e−h|A| =

∑

n∈N

nP(|CΛl
x | = n)e−nh = ∂M

Λl
x

∂h
. (24)

Inserting (24) into (23) and taking the sum over x ∈ F we have proven the proposition. �

Proposition 18 The finite volume order parameter satisfies the following inequality

MΛl ≤ h
∂MΛl

∂h
+ (MΛl )2 + β(MΛl + e−lh)

∂MΛl

∂β
, for all positive β and h. (25)

Proof In the proof of this inequality and especially in summations, A will denote vertex
sets.
To prove (25), we have to change both our graph and probability space. Let n be an arbitrary,
but fixed positive integer. For every pair of adjacent vertices y ∼ z in Λl we replace the
edge [y, z] with n edges which will be denoted by [y, z]1, [y, z]2, . . . , [y, z]n. In this way
we obtain a new graph G′

n. We shall consider bond percolation on the graph G′
n, and so

we define the canonical percolation product probability space in the usual way. A cluster

containing some vertex x will be denoted by C
G′

n
x and its vertex set by V

G′
n

x . Notice that,
for percolation on Λl with percolation parameter 1 − e−β and for percolation on G′

n with
percolation parameter 1 − e−β/n, the probabilities that two adjacent vertices are directly
connected in the percolation graph are the same. This implies the fact that the probability

of the event {V G′
n

x = A} in the new probability space is equal to the probability of the event
{V Λl

x = A} in the old probability space, for all possible sets of vertices A, if the parameter
is changed from β to β/n. Here V

Λl
x stands for the vertex set of C

Λl
x . Next we define a

graph Gn, which contains G′
n as a subgraph, by adding to G′

n a new vertex b, which is
connected to each of the vertices of G′

n with exactly n edges. The role of the blue sites
will be played by the edges incident to b. So, in addition to the percolation on G′

n, we have
the following rule: We fix h′ > 0 and for every edge incident to b we say that it is open
with probability 1 − e−h′

, independently of the states of all other edges in the graph Gn.
Notice that the events that some vertex is blue, in the old probability space, and that some
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vertex is directly connected to b, in the new probability space, have the same probabilities,
if h′ = h/n holds for the respective parameters. This implies that the probabilities of the
events {x ↔Λl

B} and {x ↔Gn b} are the same, if both parameters β and h are divided by n.
We will abbreviate the notation for the event {x ↔Gn b} by writing simply by {x ↔ b}. So
from now on we will assume that β and h are fixed and we shall work in the new probability
space with parameters β/n and h/n, and we will keep in mind that the probabilities of the
events mentioned above remain unchanged. The probability measure will still be denoted
with P.

We define the sets Fi , i = 1,2,3, as follows:

F1 := {There is a unique open edge of Gn which connects some vertex of C
G′

n
x with b},

F2 := {x ↔ b} ◦ {x ↔ b} = {There are two edge disjoint paths from x to b},

F3 :=
⋃

(y,z)∈Λ2
l

y∼z

n⋃

i=1

{[y, z]i is open and pivotal for {x ↔ b},

{z ↔Gn\[y,z]i b} ◦ {z ↔Gn\[y,z]i b}},

where Gn\[y, z]i denotes the graph obtained from Gn by deleting the edge [y, z]i . It is easy
to see that these sets are events. Lemma 3.5 from [1] implies that {x ↔ b} is a disjoint union
of the Fi ’s and so M

Λl
x = P(x ↔ b) = P(F1) + P(F2) + P(F3).

The probability P(F1) can be calculated as follows

P(F1) =
∑

A

P(V
G′

n
x = A,A is directly connected to b with a unique open edge)

=
∑

A

P(V
G′

n
x = A)P(A is directly connected to b with a unique open edge)

=
∑

A

P(V Λl
x = A)n|A|(1 − e−h/n)e−(|A|−1/n)h

= n(eh/n − 1)
∑

A

|A|P(V Λl
x = A)e−|A|h

= n(eh/n − 1)
∂M

Λl
x

∂h
. (26)

Here the sums are taken over all possible realizations A of the set of vertices V
G′

n
x . The sec-

ond equality follows from the independence of the bond variables in G′
n and bond variables

which correspond to edges incident to b. The last equality follows from (24).
The probability of the event F2 is easily bounded from above using the BK-inequality

P(F2) ≤ P(x ↔ b)2 = (MΛl
x )2. (27)

Now we bound the probability of the event F3. Let C
G′

n\[y,z]i
x be the cluster in the graph

G′
n\[y, z]i , containing x and V

G′
n\[y,z]i

x its vertex set. The event F3 can be partitioned with

respect to realizations of V
G′

n\[y,z]i
x . For a given set of vertices A we write {A d↔ b} for the

event that an edge between b and some vertex in A is open, and {A � d↔ b} for the complement
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of this event. We obtain

F3 =
⋃

(y,z)∈Λ2
l

y∼z

n⋃

i=1

⋃

A;y∈A

{V G′
n\[y,z]i

x = A, [y, z]i is open,A � d↔ b, {z ↔Gn\A b} ◦ {z ↔Gn\A b}}.

The union is taken over all possible realizations A of the set of vertices V
G′

n\[y,z]i
x . Here

Gn\A stands for the set of vertices of the graph Gn which are not elements of A. The event

{V G′
n\[y,z]i

x = A} depends only on the states of edges of G′
n which have at least one endpoint

in A, but not on [y, z]i . The event {A d↔ b} depends on the state of edges between b and
the vertices in A. Finally, the event {z ↔Gn\A b} ◦ {z ↔Gn\A b} depends only on the state of
edges of Gn which have no endpoints in A. So we see that these events are independent and
also independent of the event {[y, z]i is open}. Using this independence and the trivial fact
P([y, z]i is open) = (eβ/n − 1)P([y, z]i is closed), we get

P(F3) ≤ (eβ/n − 1)
∑

(y,z)∈Λ2
l

y∼z

n∑

i=1

∑

A;y∈A

P(V
G′

n\[y,z]i
x = A)P([y, z]i is closed)

× P({z ↔Gn\A b} ◦ {z ↔Gn\A b})P(A � d↔ b). (28)

Notice that the BK inequality, Lemma 12(a) and Lemma 13 imply

P({z ↔Gn\A b} ◦ {z ↔Gn\A b}) ≤ P(z ↔Gn\A b)2

≤ P(z ↔Gn\A b)(MΛl (β,h) + e−lh). (29)

Inserting (29) into (28) and using the independence again we obtain

P(F3) ≤ (eβ/n − 1)(MΛl + e−lh)

×
∑

(y,z)∈Λ2
l

n∑

i=1

∑

A;y∈A

P(V
G′

n\[y,z]i
x = A, [y, z]i is closed)

× P(A � d↔ b)P(z ↔Gn\A b). (30)

In the last sum there are no contributions from A’s which contain z, because, for such A’s,
the set {z ↔Gn\A b} is empty. So we can take the sum over all possible realizations A of

V
G′

n\[y,z]i
x which contain y but not z. For such A’s it is clear that

{V G′
n\[y,z]i

x = A, [y, z]i is closed} = {V G′
n

x = A}.

So (30) can be written in the form

P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∑

(y,z)∈Λ2
l

y∼z

∑

A;y∈A

P(V
G′

n
x = A)P(A � d↔ b)P(z ↔Gn\A b).
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The events {V G′
n

x = A}, {A � d↔ b} and {z ↔Gn\A b} have the same probabilities as the events
{V Λl

x = A}, {A ∩ B = ∅} and {z ↔Λl\A B}, respectively. Since the latter events are indepen-
dent, we can write

P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∑

(y,z)∈Λ2
l

y∼z

∑

A;y∈A

P(V Λl
x = A,A ∩ B = ∅, z ↔Λl\A B).

Using (21), we obtain

P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∂M

Λl
x

∂β
. (31)

Summing (26), (27) and (31) we get

MΛl
x ≤ n(eh/n − 1)

∂M
Λl
x

∂h
+ (MΛl

x )2 + n(eβ/n − 1)(MΛl + e−lh)
∂M

Λl
x

∂β
.

For fixed β and h let n go to ∞ and obtain

MΛl
x ≤ h

∂M
Λl
x

∂h
+ (MΛl

x )2 + β(MΛl + e−lh)
∂M

Λl
x

∂β
. (32)

Now sum (32) over x ∈ F , use the fact that
∑

x∈F (M
Λl
x )2 ≤ (

∑
x∈F M

Λl
x )2, and (25) is

proved. �

6 Site Model

In this part we shall explain how to obtain inequalities similar to those in (20) and (25), in the
case of the site model. In the next section we shall use this inequalities to prove Theorem 2.
We will follow the arguments from the bond model and explain modifications necessary to
proceed in the site case. In the following, just like before, G will always denote a quasi-
transitive graph. Throughout the section, G′ will denote the subgraph induced by the set of
vertices which lie in the subgraph G′ or have a neighbor in G′.

First we shall slightly change the notion of the cluster. We shall adopt the definitions
from Sect. 7 in [1]. Let G be an arbitrary quasi-transitive graph, x an arbitrary element of G

and ω an arbitrary site configuration. We define the modified cluster C̃x(ω) as the subgraph
of G induced by the following set of vertices:

x ∪ {y; there is a path from x to y including only open sites and x}.
The distribution of the random variable |C̃x | is clearly different from the distribution of |Cx |.
However, the probabilities P(|C̃x | = n), n ∈ N ∪ {∞} will be proportional to P(|Cx | = n),
n ∈ N∪{∞}. Therefore the critical values pH and pT will remain the same and the property
of exponential decay below pH will be preserved.

For any finite subgraph G′, the cluster C̃G′
x (ω) will be defined accordingly. Since the

state of the site variable at some vertex x is irrelevant for the properties of the cluster at
x, we shall actually define the cluster C̃G′

x (ω) for all vertices x and all subgraphs G′ such
that x ∈ G′. Note that the relation “x lies in the cluster of y” is not symmetric anymore and
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thus clusters can no longer be represented as connected components of some percolation
subgraph.

The functions My , M and their finite volume counterparts will be defined in the same way
as before, where one just replaces Cx by C̃x . Note that for these definitions as well as for
Lemma 9, and Propositions 10 and 11 one only needs to define the notion of cluster, while
the underlying model is completely irrelevant. This is why these results transfer directly to
the site percolation setting. Lemma 12 holds in the site model as well and the proof remains
practically the same. This also holds for Lemma 13 and Proposition 15. The notion of blue
sites is introduced in the same way as in section 4. Similarly as above, the state of the site
variable at some vertex x is irrelevant for the connectedness to any other vertex and so by
x ↔G′ B we will denote the event that x is connected to some blue site by a path in which
all vertices, except maybe x, lie in the subgraph G′. Proposition 16 remains unchanged in
the site setting.

Now we establish differential inequalities for the site model. In the proofs one has to
be careful not to mix two types of site variables, those which correspond to the percolation
process and those which correspond to blue sites. In particular, pivotality will refer only to
percolation variables. Similarly as before Λl\G′ will denote the subgraph of Λl obtained by
deleting all vertices in G′ and all edges which are incident to some vertex in G′.

The formula in Proposition 17 remains the same in the site percolation setting.

Proposition 19 There exists a constant K > 0 such that

∂MΛl

∂β
≤ K(MΛl + e−lh)

∂MΛl

∂h
, for all positive β and h. (33)

Proof The proof is analogous to the proof of Proposition 17. Using the Russo formula one
obtains

∂M
Λl
x

∂β
=

∑

y∈Λl

P(y is closed, y is pivotal for the event {x ↔Λl
B}).

We notice that

{y is closed, y is pivotal for the event {x ↔Λl
B}}

= {C̃Λl
x ∩ B = ∅, y ∈ C̃

Λl
x , y ↔

Λl\C̃Λl
x

B}.

Now using independence and presenting the above events as unions over possible realiza-
tions of C̃

Λl
x we obtain by means of the site version of Proposition 16

∂M
Λl
x

∂β
=

∑

y∈Λl

∑

A⊂Λl

y∈A\A

P(C̃Λl
x = A)MΛl\A

y e−h|A|. (34)

Using the site versions of Lemmas 12(a) and 13 we get

∂M
Λl
x

∂β
≤ (MΛl + e−lh)

∑

A⊂Λl

|A\A|P(C̃Λl
x = A)e−h|A|

≤ K(MΛl + e−lh)
∑

A⊂Λl

|A|P(C̃Λl
x = A)e−h|A|
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= K(MΛl + e−lh)
∂M

Λl
x

∂h
, (35)

where K is again the maximal vertex degree in G. The last equality in (35) is proven just
like its bond analogue (see (23)). �

In Proposition 18 we will modify one term on the left hand side. This is due to the fact
that we will not change the graph Λl as dramatically as in the proof of Proposition 18.

Proposition 20 The finite volume order parameter satisfies the following inequality

MΛl ≤ h
∂MΛl

∂h
+ (MΛl )2 + (eβ − 1)(MΛl + e−lh)

∂MΛl

∂β
, for all positive β and h. (36)

Proof As in the proof of Proposition 18 we will change both our graph and probability
space. Rather than considering the probability space of blue sites we shall add a new vertex
b to the graph Λl . This vertex will be connected to each vertex in Λl by exactly n edges.
Notice that the new graph, which will be denoted by Gn, contains Λl as a subgraph. We
shall now consider a mixed site-bond percolation model in which each vertex of Λl is open
with probability 1 − e−β and in which each bond incident to b is open with probability
1 − e−h/n. Again we shall compare this process with the usual percolation model with blue
sites which are generated on each vertex with probability 1 − e−h. For the relation between
these two processes see the discussion at the beginning of the proof of Proposition 18. The
event {x ↔Gn b} can be partitioned into following disjoint events:

F1 := {There is a unique open edge which connects some vertex of C̃Λl
x with b},

F2 := {x ↔Gn b} ◦ {x ↔Gn b}
= {There are two paths from x to b, which have no common vertices other than x

and b},
F3 :=

⋃

y∈Λl

{y ∈ C̃Λl
x is open and pivotal for {x ↔Gn b}, {y ↔Gn b} ◦ {y ↔Gn b}}.

The probability of the first event can be calculated in the same way as in the bond case. We
obtain:

P(F1) = n(eh/n − 1)
∂M

Λl
x

∂h
. (37)

Since P(x ↔Gn b) = P(x ↔Λl
B), the BK inequality implies

P(F2) ≤ P(x ↔Gn b)2 = (MΛl
x )2. (38)

The last event can be rewritten as

F3 =
⋃

y∈Λl

⋃

A;y∈A\A
{C̃Λl\{y}

x = A,A � d↔ b, y open, {y ↔Gn\A b} ◦ {y ↔Gn\A b}},

where the second union is taken over all possible realizations A of C̃
Λl\{y}
x , for which y ∈

A\A (note that A is defined as the closure of A in Λl). Considering the above formula and
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using independence we obtain

P(F3) ≤ (eβ − 1)
∑

y∈Λl

∑

A;y∈A\A
P(C̃Λl\{y}

x = A,y is closed)

× P({y ↔Gn\A b} ◦ {y ↔Gn\A b})P(A � d↔ b)

≤ (eβ − 1)(MΛl + e−lh)
∑

y∈Λl

∑

A;y∈A\A
P(C̃Λl

x = A)MΛl\A
y e−h|A|

= (eβ − 1)(MΛl + e−lh)
∂M

Λl
x

∂β.
(39)

In the second inequality we used the BK inequality and the site versions of Lemma 12(a),
Lemma 13 and Proposition 16 in the same way as in the proof of Proposition 18. In the last
equality we used (34). Now the result follows after taking the sum of (37), (38) and (39) and
letting n tend to ∞. �

7 Completion of the Proof of Theorem 2

In this section we will complete the proof of our main result, using the differential inequali-
ties (20) and (25).

The next result will be useful in the proof of Lemma 22. It is a special case of Lemma
4.1 in [1].

Lemma 21 Let M: R+ → R be an increasing differentiable function of h obeying

lim
h↓0

M(h) = 0, lim
h↓0

M(h)

h
= ∞,

M ≤ h
dM

dh
+ M2 + kM2 dM

dh
, for all h > 0,

for some positive constant k. Then there exists a constant c > 0 such that for all h > 0 small
enough we have

M(h) ≥ c
√

h.

Lemma 22 and Proposition 23 are the final steps of the proof of Theorem 2. They cor-
respond to Theorem 4.2 and Lemma 5.1 from [1]. We just need some adjustments in the
proof of Proposition 23 because of somewhat different differential inequalities. As an aside
we obtain an upper bound on the critical exponent defined as

δ := lim inf
h↓0

lnh

M(βT ,h)
. (40)

Lemma 22 There is a constant c > 0, such that for h > 0 small enough

M(βT ,h) ≥ c
√

h. (41)

In particular, the critical exponent (40) obeys δ ≥ 2.
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Proof First notice that M satisfies the following differential inequality

M(β,h) ≤ h
∂M

∂h
(β,h) + M2(β,h) + KβM2(β,h)

∂M

∂h
(β,h), (42)

in the bond case, respectively

M(β,h) ≤ h
∂M

∂h
(β,h) + M2(β,h) + K(eβ − 1)M2(β,h)

∂M

∂h
(β,h), (43)

in the site case. These inequalities can be proven by inserting (20) into (25) in the bond case
(or inserting (33) into (36) in the site case) and letting l go to ∞. If limh↓0 M(βT ,h) > 0
there is nothing to prove. Suppose limh↓0 M(βT ,h) = 0. This implies by Proposition 11 that
PβT

(|Cx | = ∞) = 0, for all vertices x and

lim
h↓0

∂M

∂h
(βT ,h) =

∑

x∈F
EβT

(|Cx |; |Cx | < ∞) =
∑

x∈F
EβT

(|Cx |) = ∞,

by Proposition 5. Now the Mean Value Theorem implies

lim
h↓0

M(βT ,h)

h
= ∞. (44)

In view of (42) (respectively (43) in the site case) and (44), the claim follows directly from
Lemma 21. �

Except for having to control the term e−hl in (33) and (36), the proof of the next propo-
sition is the same as the proof of Lemma 5.1 in [1].

Proposition 23 For any β ′ > βT we can find a positive constant d > 0 such that

lim
h↓0

M(β,h) ≥ d(β − βT ) (45)

holds for every β ∈ [βT ,β ′].

Proof Let’s consider the bond case first. Change the variables (β,h) to (β, lnh), i.e. define
u := lnh and M̃Λl (β,u) = MΛl (β,h). Now ∂ ln M̃Λl

∂u
(β,u) = h

MΛl (β,h)

∂MΛl

∂h
(β,h) and so (25)

can be rewritten as

1 ≤ ∂ ln M̃Λl

∂u
(β,u) + M̃Λl (β,u) + β

(

1 + e−leu

M̃Λl (β,u)

)
∂M̃Λl

∂β
(β,u), (46)

for every u ∈ R. Now fix some 0 < h1 < h2, define u1 := lnh1 and u2 := lnh2 and integrate
(46) over the rectangle [βT ,β1] × [u1, u2], where β1 is an arbitrary real number between βT

and β ′. Using the fact that M̃Λl is increasing in both β and u and switching back to h, we
get

(β1 − βT ) ln
h2

h1
≤ (β1 − βT ) ln

MΛl (β1, h2)

MΛl (βT ,h1)
+ (β1 − βT ) ln

h2

h1
MΛl (β1, h2)

+ β ′ ln
h2

h1

(

1 + e−lh1

MΛl (βT ,h1)

)

(MΛl (β1, h2) − MΛl (βT ,h1)).
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Let l go to ∞ and obtain

β1 − βT ≤ (β1 − βT )
ln M(β1,h2)

M(βT ,h1)

ln h2
h1

+ (β1 − βT )M(β1, h2) + β ′(M(β1, h2) − M(βT ,h1)). (47)

Now notice

ln M(β1,h2)

M(βT ,h1)

ln h2
h1

= lnM(β1, h2) − lnM(βT ,h1)

lnh2 − lnh1
=

lnM(β1,h2)

lnh1
− lnM(βT ,h1)

lnh1
lnh2
lnh1

− 1
. (48)

Using Lemma 22 and (48) we get

lim sup
h1↓0

ln M(β1,h2)

M(βT ,h1)

ln h2
h1

≤ 1

2
. (49)

Inserting (49) to (47) and letting h1 ↓ 0 leads to

1

2
(β1 − βT ) ≤ M(β1, h2)(β1 − βT + β ′) − β ′ lim

h1↓0
M(βT ,h1)

≤ (2β ′ − βT )M(β1, h2).

Let h2 ↓ 0 and the proof is over.
In the site model we start by changing the variables (β,h) to (p,u) := (1 − e−β, lnh).

In other words, this time we define M̃Λl : ]0,1[×R → R such that M̃Λl (p,u) := MΛl (β,h).
Now (36) can be rewritten as

1 ≤ ∂ ln M̃Λl

∂u
(p,u) + M̃Λl (p,u) + p

(

1 + e−leu

M̃Λl (p,u)

)
∂M̃Λl

∂p
(p,u). (50)

This inequality replaces (46) but has the same form. Thus the proof continues the same way
as in the bond case after making the transformations βT �→ pT := 1 − e−βT and β ′ �→ p′ :=
1 − e−β ′

. �

Proof of Theorem 2 Proposition 23 tells us that limh↓0 M(β,h) is positive as soon as β > βT .
In the view of Proposition 11 this proves the main result. �

8 Extension of Results to General Bond Models

In this section we will explain how the methods presented above can be applied to more
general bond percolation models on quasi-transitive graphs. The model we present here is
the partially oriented long-range model which was considered in [1] for the lattice case.

Assume that G = (V ,E) is again a quasi-transitive graph, with some fixed fundamental
domain F . Now make the graph complete, that is connect each pair of vertices {x, y} with an
unoriented edge [x, y]. Moreover, connect x and y with two oriented edges [x, y〉 (oriented
from x to y) and [y, x〉 (oriented from y to x). The distance function on the vertices is the
one inherited from the graph G. Thus it makes sense to define the length of an edge as
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the distance (in G) between its endvertices. Paths in our graph can contain both oriented
and unoriented edges, but the orientation of oriented edges must be in accordance with the
orientation of the considered path.

On the complete graph the usual nearest neighbor bond percolation is uninteresting, be-
cause any parameter p > 0 will correspond to the supercritical phase. To avoid this triviality,
one has to introduce certain damping of the probabilities that x and y are connected, as the
distance between x and y goes to infinity. This is done by introducing for each pair of
vertices (x, y) two positive parameters J[x,y] and J[x,y〉. The unoriented edge [x, y] will be
open with probability 1 − e−βJ[x,y] and the oriented edge [x, y〉 will be open with probability
1 − e−βJ[x,y〉 . Of course, we assume that all these events are mutually independent and thus
the product probability space can be constructed similarly as before. The structure of the
quasi-transitive graph G is reflected through the invariance of the parameters J : we assume
that the parameters J are invariant under the automorphisms of the graph G. In other words,
J[γ x,γy] = J[x,y] and J[γ x,γy〉 = J[x,y〉, for all γ ∈ Aut(G) and all vertices x and y. Next we
define Jx := ∑

y∈V (J[x,y] + J[x,y〉). To avoid the triviality mentioned above, we will assume
that

J0 := sup
x∈V

Jx = max
x∈F Jx < ∞. (51)

Without this assumption, some vertices would be directly connected with infinitely many
other vertices almost surely.

The subgraphs Λl are also defined similarly as before, using the distance function of the
original graph G. The vertex set remains unchanged, but for the set of edges we take all pos-
sible oriented and unoriented edges between pairs of vertices contained in Λl . Percolation
on the graph Λl inherits the probabilities for edges to be open from the percolation on the
whole graph.

Since the graph contains oriented edges, the relation “being connected in a percolation
subgraph” defined on the set of vertices is not symmetric any more and thus the notion of
the connected components is now meaningless. However, the percolation cluster containing
some vertex x can be defined in a natural way, as the graph Cx(ω) for which the vertex set is
the set of all vertices which can be reached from x by an open path. The edge set is defined
as the set of all open edges between vertices of Cx(ω). A percolation cluster C

Λl
x (ω) in Λl is

defined similarly. Using this new definition of clusters, the order parameter M and the finite
volume order parameter MΛl can be defined in the same way as before. The probabilistic
interpretation with colored sites is also applicable just as before, since Proposition 16 is true
in this setting, too.

The critical parameters βT and βH are defined in the same way as before. In the nearest
neighbor model, the fact that these values are well defined relied on the Fundamental Tools
presented in Sect. 3. Both Definition 7 and the Fundamental Tools can be generalized to the
present model in a natural way. These results are scattered in the literature. For example,
a general Russo inequality can be found in [16] and a general BK inequality can be found
in [17]. For more explanations, one can also look at the arguments in [1] regarding this
general model. Just as before, these generalizations imply the fact that the critical parameters
are well defined. The generalizations of the Fundamental Tools also ensure that the basic
properties of the order parameter remain valid in the new model. Lemma 9 and Propositions
10 and 11 are still valid in the new setting. One can easily convince oneself that this is also
true for parts (a) and (b) of Lemma 12. However, we need to be more careful with part (c).
Rather than the equality stated in this part, in the general model we obtain an inequality
formulated in Lemma 24 below. This inequality will be used in Lemma 25 which replaces
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Lemma 13. Under the same assumptions as in Lemma 13, Lemma 25 gives the following
inequality

MΛl
y (β,h) ≤ MΛl

x (β,h) + fl(β,h), (52)

where (fl)l∈N is some sequence of positive continuous functions which converges to zero
locally uniformly for l → ∞. Notice that this bound is sufficient to prove differential in-
equalities similar to those in (20) and (25). Namely, one obtains the following differential
inequalities

∂MΛl

∂β
≤ K(MΛl + fl)

∂MΛl

∂h
, and (53)

MΛl ≤ h
∂MΛl

∂h
+ (MΛl )2 + β(MΛl + fl)

∂MΛl

∂β
. (54)

These inequalities are sufficient to conclude the equality of the critical values βH = βT .
More precisely, the proof of Lemma 22 extends to our new setting. For this we use the fact
that Proposition 5 is also true in this general model (this also follows from the proof of
Lemma 3.1 in [2]). Proposition 23 still gives the main result, since its proof does not require
any special form of the functions (fl), but only the fact, that they decay locally uniformly
for l → ∞.

Now we state the mentioned inequality which replaces part (c) of Lemma 12.

Lemma 24 There exists a nondecreasing sequence of positive integers (nl)l∈N, which con-
verges to infinity and a sequence of positive continuous functions (gl)l∈N, gl : ]0,∞[→ R

which converges to zero locally uniformly for l → ∞, such that the following inequality
holds for any x ∈ F , any l ∈ N, and any positive integer 1 ≤ k ≤ nl

P(|Cx | ≥ k) ≤ P(|CΛl
x | ≥ k) + gl(β), for all β ∈]0,∞[. (55)

Proof We follow the arguments in the proof of Lemma A.3 from [1]. For any positive real
r define

Jr := max
x∈F

∑

y∈V
d(x,y)≥r

(J[x,y] + J[x,y〉).

Since J0 is finite, limr→∞ Jr = 0. In the following we will use the identification from Re-
mark 1 in our new setting. We have to estimate P(|Cx | ≥ k, |CΛl

x | < k). For any ω ∈ {|Cx | ≥
k, |CΛl

x | < k} there exists a path consisting of at most k edges which connects some x with
some vertex outside Λl . This path connects two vertices which are at distance greater or
equal to l. Thus there has to be an edge in this path which has length greater or equal to l/k.
To reach this edge we have to make j steps in the path, for some j such that 0 ≤ j ≤ k − 1.
The probability that there exists an open edge of length greater or equal than l/k which
can be reached from x by an open path of length j , can be bounded above by βJl/k(βJ0)

j .
Here we used the inequality 1 − e−t ≤ t for any positive t . So from the arguments above we
deduce that

P(|Cx | ≥ k, |CΛl
x | < k) ≤ βJl/k

k∑

j=1

(βJ0)
j−1. (56)
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For any positive integer n define Kn := n
∑n

k=1(nJ0)
k−1. Since limr→∞ Jr = 0, we can find

an increasing sequence of positive integers Ln such that

lim
n→∞JLn/nKn = 0. (57)

Now define nl := max{n;Ln ≤ l} and gl(β) := βJl/nl

∑nl

k=1(βJ0)
k−1. From (57) it is clear

that liml→∞ gl(β) = 0 locally uniformly on R
+. The other claimed properties of the se-

quences (nl)l and (gl)l are obvious. Using (56) and the fact that r �→ Jr is a non-increasing
function we obtain P(|Cx | ≥ k, |CΛl

x | < k) ≤ gl(β). This proves the lemma. �

Using the previous result and part (a) of Lemma 12 which, as we said, still holds in our
new setting, one easily obtains liml→∞ P(|CΛl

x | ≥ k) = P(|Cx | ≥ k). This can be used to
prove the pointwise convergence of the finite volume order parameter to the order parameter
and the same claim for the partial derivative in h, that is Proposition 15.

Using Lemma 24 one can easily obtain an inequality as in (52).

Lemma 25 Let y be a vertex of Λl and x be the unique element of F in the same orbit as y.
Then there exists a sequence of positive continuous functions (fl)l∈N, converging locally
uniformly to 0 for l → ∞, such that the following inequality holds

MΛl
y (β,h) ≤ MΛl

x (β,h) + fl(β,h), for all (β,h) ∈]0,∞[2. (58)

Proof Using a similar decomposition as in the proof of Lemma 13, and then Lemma 24 and
Lemma 9 we get

MΛl
y (β,h) =

nl∑

k=1

P(|CΛl
y | ≥ k)(e−(k−1)h − e−kh) +

∑

nl+1≤k<∞
P(|CΛl

y | ≥ k)(e−(k−1)h − e−kh)

≤
nl∑

k=1

P(|CΛl
x | ≥ k)(e−(k−1)h − e−kh) +

nl∑

k=1

gl(β)(e−(k−1)h − e−kh) + e−nlh

≤ MΛl
x (β,h) + gl(β) + e−nlh. (59)

Since (nl)l converges to infinity, the claim of the lemma is proven. �
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